HYGAS
Full utilization of aqueous organic waste products
Actual situation:

By now the sludge disposal costs are very high and with the amendment of the Sewage Sludge Ordinance, the regulatory requirements become more strict: Sewage Sludge can no longer be applied in large quantities in agriculture and it may only be disposed of in incineration plants if phosphorus is recovered.

The consequence of this: in the future, approximately 1.5 million tonnes of sewage sludge dry substance will have to be disposed of in a different way each year.

In addition to that, the phosphorus contained in the sludge is to be recovered.
Our plants return 100% of the nutrients and valuable substances – for example phosphorus – as well as energy that is contained in sewage sludge, pomace or green waste to the cycle of materials. All ingredients are recycled, there is no waste, but only valuable substances which are returned to the cycle of materials.

With the supercritical gas generation we make the combustion superfluous and reduce the waste disposal costs. This process is the only one that already complies with the new sewage sludge regulation.

The end products

The synthesis gas “Hygas” that can be stored, converted into electricity and/or material used.

Marketable substances including – among others – available phosphorus.

We deliver:

Plants for the recovery of valuable materials and energy from aqueous organic waste products from 50 to 1,500 kg/h organic dry substance. This corresponds to between 50,000 and 1,350,000 inhabitants.
During the supercritical gas generation, all the ingredients of the organic material are utilized. No waste products are produced which must be disposed of. The nutrient salts formed in the process – including phosphates – are highly plant ready. They are therefore ideal as a raw material for the production of fertilizers.

Furthermore, the operators of the plants generate revenue: Minerals, metal salts as well as synthetic gas can be merchandised. Potential customers of the valuable substances are the building materials industry, fertilizer industry and metal industry.

"We are recovering the phosphorus environmentally friendly and resources gentle and can keep the disposal costs per inhabitant and year stable at around four Euro. With the sale of valuable materials, plant operators generate additional revenues."

Karl-Heinz Lentz

THE PROCESS

The advantages:

Complete recovery of nutrients, valuable materials as well as energy

Clean synthesis gas without inorganic components, storable without compression

Positive electrical energy balance
The supercritical gas generation pays off primarily by saving the costs of disposal in incineration plants. Also the electrical energy balance is positive: the chemical energy contained in the starting material is converted into electrical current directly in the plant.

A major reason for the high energy efficiency is that in contrast to traditional methods, no pre-drying of the wet material is required and no evaporation losses are produced. Welcome side effects are also that because of the high temperatures the material is hygienized “en-passant” during the process. The exhaust air is free of polluting substances.

Moreover, the CO₂ balance of the plants is significantly improved by the climate friendly power generation.
The wet organic mass is split into synthesis gas in supercritical water – at a pressure of more than 250 bar and a temperature of more than 600 °C. It can be stored and later on converted into electricity and/or material used. It consists of carbon dioxide, methane and hydrogen as well as propane and ethene.

When leaving the system it is under high pressure and can be stored without further compression.

Also the solids separated during the process can be sold.

The valuable substances

Minerals for the building materials industry

Highly available for plants

phosphorus

Metal salts for the metal industry

TECHNOLOGY

<table>
<thead>
<tr>
<th>Size of treatment plant (EW)</th>
<th>50,000</th>
<th>100,000</th>
<th>150,000</th>
<th>250,000</th>
<th>500,000</th>
<th>750,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>max. digested sludge (original material) tₜ, a</td>
<td>4,000</td>
<td>8,000</td>
<td>12,400</td>
<td>20,400</td>
<td>40,400</td>
<td>60,800</td>
</tr>
<tr>
<td>max. dry matter per year tₜ, a</td>
<td>1,000</td>
<td>2,000</td>
<td>3,100</td>
<td>5,100</td>
<td>10,100</td>
<td>15,200</td>
</tr>
<tr>
<td>max. net electrical power by HyGas kWₑ</td>
<td>85</td>
<td>180</td>
<td>275</td>
<td>460</td>
<td>930</td>
<td>1,400</td>
</tr>
<tr>
<td>max. net electricity delivered by HyGas per year MWhₑ</td>
<td>737</td>
<td>1,561</td>
<td>2,384</td>
<td>3,988</td>
<td>8,063</td>
<td>12,138</td>
</tr>
<tr>
<td>potential for CO₂ reduction²</td>
<td>t/a</td>
<td>419</td>
<td>888</td>
<td>1,357</td>
<td>2,269</td>
<td>4,588</td>
</tr>
<tr>
<td>phosphorus-recovery > 85 %²</td>
<td>t/a</td>
<td>27</td>
<td>53</td>
<td>83</td>
<td>136</td>
<td>270</td>
</tr>
</tbody>
</table>

¹ 569 g/kWh CO₂ emission factor 2014 due to UBA
² (1,7 g P / Ew*d)
Karl-Heinz Lentz, founder of iGas energy, uses the exceptional properties of water for the new process, which he has developed specially for the extraction of organic waste products.

Beyond the critical point – at a temperature of at least 374 °C and a pressure of more than 221 bar – it becomes supercritical. It is dense as a liquid but has the same viscosity as a gas.

In this fourth aggregate state organics go completely in solution. If the temperature exceeds 500 °C an oxidation reaction begins at which the hydrocarbons are split.
iGas energy develops and manufactures plants that make most efficient use of what is often referred to as lost resources. The essential element of our products is the profound know-how in gas technology.

iGas energy is part of the SK Group. The expertise in automation and rectifier technology as well as in high-pressure technology contributed by the group companies Fest AG and Maximator GmbH ensures that the equipment is sturdy and of low-maintenance design.

- **Resource-saving circular economy**
 Complete recycling of valuable substances and energy from aqueous organic waste into material cycles.

- **Hydrogen from renewables**
 Power-to-X plants for storage of renewables on the basis of energy conversion into hydrogen by high-pressure PEM-electrolysis.

- **Innovative gas technology**
 Plant technology for supplying industrial processes with gases.